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Multiple-Objective Distributional Optimization (MODO)

{ in_ F(q) £ [F1 (@), Fo(@), -, Fi(a)] ]

= X € R%: acompact domain, P,(X) :space of probability distributions on X
= K > 2: number of objectives

= Each Fi(q) is defined over the space P, (X)



Multiple-Objective Distributional Optimization (MODO)
{ min_F(Q) £ [F1(q), F>(Q), ., F () |

qQEP,(X)

= X € R%: acompact domain, P,(X) :space of probability distributions on X
= K > 2: number of objectives
= Each Fi(q) is defined over the space P, (X)

= MODO can be regarded as multi-objective optimization (MOO) on the space of
probability distributions, where MOO is:

g{réljrcl f(x) = [f;(x), (%), ..., fg(X)]



Multiple-Objective Distributional Optimization (MODO)

= Example: Multi-Target Sampling

Given a set of target distributions {p;(Xx), p,(X), ..., px(X)}, with parameters
X, we aim to find the optimal distribution q* that minimize:

min [KL(q, p1), KL(q, p2), ..., KL(q, px)]
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based on picture in [Phan et al, NeurlPS 2022]



Related work: Distributional Optimization -1

Optimization over distribution space: min F
p pace: min F(q)

= \Wasserstein gradient descent (WGD) constructs a
sequence of {q(V} to decrease F

" T, P, (X): tangent space at q*
"s €T 0P (X): tangent vector at (¥ P
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Optimization over distribution space: min F
p pace: min F(q)

= \Wasserstein gradient descent (WGD) constructs a
sequence of {q(V} to decrease F
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= Lety: [0,1] = P,(X) be a curve satisfying y(0) = q® and y'(0) = s, first variation
5F(qV) is defined as

lim— [F(/() = F(a®)] = [ 87(o) (9s(dx
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Related work: Distributional Optimization -3 v,

Optimization over distribution space: min F
p pace: min F(q)

= \Wasserstein gradient descent (WGD) constructs a
sequence of {q(V} to decrease F

" T, P, (X): tangent space at q*
"s €T 0P (X): tangent vector at (¥ P

= Lety: [0,1] = P,(X) be a curve satisfying y(0) = q® and y'(0) = s, first variation
5F(qV) is defined as

lim— [F(/() = F(a®)] = [ 87(o) (9s(dx

= Continuity equation: s(x) + div (q(t) (x)v(x)) = 0,v(x) = dx/dt
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Related work: Distributional Optimization -3 v,

Optimization over distribution space: min F
p pace: min F(q)

= \Wasserstein gradient descent (WGD) constructs a
sequence of {q(V} to decrease F

" T, P, (X): tangent space at q*
"s €T 0P (X): tangent vector at (¥ P

= Lety: [0,1] = P,(X) be a curve satisfying y(0) = q® and y'(0) = s, first variation
5F(qV) is defined as

lim— [F(/() = F(a®)] = [ 87(o) (9s(dx

= Continuity equation: s(x) + div (q(t) (x)v(x)) = 0,v(x) = dx/dt
= Wasserstein gradient:  grad F(q'?)(x) + div (q(t) (x)VSF(q(t))(x)) =0



Finding Pereto Stationary Distributions for MODO

= Optimization over distribution space: Erglgc) F(q) 2 |[F,(q),F,(q), ..., Fx(q)]
2

= Pareto optimality. Considerp,q € P,(X), say qdominates p if Fi(q) = Fy(p) fork =
1,2,...,K, and F(p) # F(q).q € P,(X) is Pareto optimal if forallp € P,(X), qis not
dominated by p.

* Pareto Stationarity. g € P, (X) is Pareto stationary if

mln(grad F(qg)w, grad F(Q)w), =

Further, q € P, (X) is e-Pareto stationary if

mln(grad F(q)w,grad F(qQ)w), < €2

where W = {w € R¥|w > 0,w'1 = 1}, grad F(q) = [grad F,(q), ..., grad Fx(q)], and
grad F(qQ)w = Zk=1 wy grad Fi.(q)



Multiple Wasserstein Gradient Descent (MWGraD) for MODO

Update Distributions via Velocities

T
= Goal: Constructs a sequence of {q(t)}tzo, starting from a simple q(O) (e.g. Gaussian),
minimizing all objectives simultaneously

= Particle update:
X(t+1) — X(t) — (XV(t) (X(t))

where x® ~ q®, vV js the velocity field, and a is stepsize.

= Tangent vector s associated with v :
sO(x®) = div (q(t) (x®)y® (X(t))) € T, 0P (X)



Multiple Wasserstein Gradient Descent (MWGraD) for MODO

Velocity-based reformulation of MODO

= Lety:[0,1] - P,(X) be a curve satisfying
v(0) = qP andy'(0) = s

= Goal: find sV that maximize the minimum decrease across all objectives
1

max min - (Fi(a®) = F(y())



Multiple Wasserstein Gradient Descent (MWGraD) for MODO
Reformulation of MODO

= Aim: find s(® that maximize the minimum decrease across all objectives

1
max lErel[m] (Fk(q( )) — Fk(y(h)))

First variation:

lim - [Fk(y(h)) F(q®)] = f §F, (q®) (0s(x)dx

Continuity equation:

s(x) = div (q(t) (x)v(x))

/

- (® ®
max min < j (V8F(aW) (), v(x))qP (x)dx
\




Multiple Wasserstein Gradient Descent (MWGraD) for MODO
Reformulation of MODO

= Aim: find s(® that maximize the minimum decrease across all objectives

First variation:

lim - [Fk(y(h)) F(q®)] = f §F, (q®) (0s(x)dx

max min <

/

VeV ke[K]

\

1
max lErel[m] (Fk(q( )) — Fk(y(h)))

Continuity equation:

s(x) = div (q(t) (x)v(x))

j (V8Fx(qP) (%), v(x))q® (x)dx - % f (v(x), v(x))q? (x) dx
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Multiple Wasserstein Gradient Descent (MWGraD) for MODO

Reformulation of MODO: at each iteration t, find v® that optimize:

ma min 4 [ (785 (o9) (0, v0)a® (x — [ (v, v00)a O () dx

Theorem 1. The solution vV is given by: .

viO(x) = VO(x)w* = wkvlg)(x) for Vx

| J

Convex combination of velocities

where vk)(x) = VSF (q(t))(x) fork € [K], VP (x) = [vft)(x),vgt)(x), ...,vlgt)(x)], and

w* = argmin— [”V(t)(x)w” q(t)(x)dx

weN
|

Squared norm of combined velocity




Multiple Wasserstein Gradient Descent (MWGraD) for MODO

" Practical implementation

1) Particles approximation: use { (t )}_ to approximate q(t), and update via:
(t+1) (t) ())

X —aviP(x
2) Velocity Estimation: vi9(x) = VO(x)w* = ¥X_, wf;VSFk(q(t))(x),

Estimate 8F(q'?) using: SVGD [Liu et al., 2016], Blob method [Carrillo et al., 2019],
Neural network (or variational transport) [Liu et al 2021]

3) Min-norm oracle (Approximate): w* = argmin = f”V(t)(x)w” q?(x)dx

weEW

Instead of solving exactly, take a projected gradient descent step:
w(t'l'l) — Hw[w(t) — 6Aw(t)],

where Aw( is the gradient of min-norm oracle w.r.t. w, f3 is the step size.



Multiple Wasserstein Gradient Descent (MWGraD) for MODO

Aaj‘;umption 1 (Wasserstein gradient errotr} The deviation between the true velocity
v’ =V8F,(q'?) and the approximation ¥, is upper bounded.

2
~ (t) (t) 2
Eqw Hvk ~ Vi Hz =0

Assumption 2 (Geodesic smoothness) Fy is geodesically £;,-smooth with respect to the 2-
Wasserstein distance, for k € [K], in the sense that: for p,q € P, (X),

14
Fi(@) < Fi(p) + (gradFi(p), Expp () +—* Wi(p,a)

Theorem 2. Let{&szuln'>ptio(nsl1)?nd 2 hold, and € > 0 be a small constant. Set a < 0(€?), B <

0(e?), T > maxi0 —),0 5z we then have that )
1
OsrtréiTn_l(grad F(q(t))w(t), grad F(q(t))w(t))q(t) < TZ(grad F(q(t))w(t), grad F(q(t))w(t))q(t)
t=0

< €? + 30

A

convergence with exact computation of velocities approximation error of velocities



Experiments: Synthetic dataset

Objective: Erjrjli(r}c )[KL(q, p1),KL(q, p,), ..., KL(q, px)] (Multi-target sampling)
qer2 I

Setup:
= K= 4 target distributions (each a mixture of 2 Gaussians)
= Targets share a high-density region
= Approximate q using 50 particles initialized from
a standard normal

Methods compared:
= MOO-SVGD [Liu et al., 2021]
= MWGraD Variants (ours):

- MWGraD with SVGD (MWGraD-SVGD)
- MWGraD with Blob method (MWGraD-Blob)
- MW GraD with neural networks (MWGraD-NN)




Experiments: Synthetic dataset

Objective: min [KL(q, p1), KL(q, p2), -.., KL(q, px)]
qEP2(X) e e

MOO SVGD

WGraD-SVGD -

MWGraD-Blob

MWGraD-NN

MWGraD tends to cover the joint high density of objective functions



Experiments: Multi-task learning
Bayesian multi-task learning:
* Assume K prediction tasks and a given dataset D

* Parameters for each task k: shared part: X, task-k-
specific part: z¥

* Aim: estimate/sample from p(x, A |D) for each task k

Procedure: repeat (1) and (2)
(1) FixX, sample from p(zk | X, D) for each task k
(by SVGD [Liu et al., 2016])

(2) Fix z1, z2,.., zX, perform multi-target sampling from
multiple posteriors

p(x| z',D),p(x|z? D), ..., p(x|z*,D)
(by MWGraD variants)

Task 1

Task 2

Task K

X

ask-specific
art

I Shared part

Input



Experiments: Multi-task learning

 Datasets: Multi-Fashion-MNIST, Multi-MNIST and Multi-Fashion. Each of them consists

of 120,000 training and 20,000 testing images from MNIST and FashionMNIST by
overlaying an image on top of another.

* Number of tasks: K= 2, Number of particles: m=5. Run 2000 updates of particles

Ours
— Tasks MGDA  MOO-SVGD MT-SGD | MWGraD MWGraD MWGraD
SVGD  -Blob NN

. #1 944406 948404 962403 [ 9575204 967405 959404
Multi-Fashon+MNIST ) oo\ 05 g56100 878406 | 889406 925404 882403
IEVNIST #1 934404 93.1403 044105 | 945104  97.6102 977405
9 91.8406 912402 929405 | 932406 967405  95.5+0.4

Tt Fachion #1 84.1408 83.8408 840106 | 85.120.7 868403 872104
¥ $33+04 831403 84.6+0.5 | 843+£04 872405  853+0.6

Table 1: Experimental results on Multi-Fashion+MNIST, Multi-MNIST, and Multi-Fashion. We report the ensemble accuracy

(higher is better) averaged over three independent runs with different initializations.




Conclusions

* Addressed the MODO problem: simultaneously minimizing multiple functions of
probability distributions

* Introduced MWGraD, an iterative particle-based algorithm for solving MODO

* Provided theoretical analyses and presented experimental results on both synthetic
and real-world datasets, demonstrating the effectiveness of MWGraD in identifying the
joint high-density regions of objective functions
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Appendix : Multiple gradient descent algorithm (MGDA)

= MOO

rréljrcl f(x) £ [f;(%), (%), ..., fx(X)]

= Pareto Optimality. For two solution xPy € X, say y dominates x iff f; (y) = fi(x)
1(‘jor k=12,..,K and f(y) # f(x).xis Pareto optlmal if no other solution
ominates it.

» Pareto stationary solution. x* € X is Pareto stationary iff there exists w € W
such that

VE(x)w = Z wy VE(x7) = 0,
k=1

where
={w e RK|w = 0,w'1 = 1}, Vf(x) = [Vf,(X), Vf,(X), ..., Vi (X)].



Appendix: Multiple gradient descent algorithm (MGDA)

" |s iterative and gradient-based
s x(FD) = x(O — od® (dV s search/update direction at t-th iteration).

= Key idea: find d(V that maximizes the minimum decrease across all the
objectives by solving:

1
1) — i (V) — 2
(Primal) d afégl;n {g?léﬁwfk(x ), d) + > ||d||z}
K 2
) — - z Ve (x®
w argmin w X

(Dual) gmin | 2, i V()

2

Then, d® = ZE=1 W,({t) ka(x(t)) = Vf(x(t))w(t)
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